Planning and Navigation of Climbing Robots in Low-Gravity Environments
نویسندگان
چکیده
Advances in planetary robotics have led to wheeled robots that have beamed back invaluable science data from the surface of the Moon and Mars. However, these large wheeled robots are unable to access rugged environments such as cliffs, canyons and crater walls that contain exposed rock-faces and are geological time-capsules into the early Moon and Mars. We have proposed the SphereX robot with a mass of 3 kg, 30 cm diameter that can hop, roll and fly short distances. A single robot may slip and fall, however, a multirobot system can work cooperatively by being interlinked using spring-tethers and work much like a team of mountaineers to systematically climb a slope. We consider a team of four or more robots that are interlinked with tethers in an “x” configuration. Each robot secures itself to a slope using spiny gripping actuators, and one by one each robot moves upwards by crawling, rolling or hopping up the slope. Apart from climbing, path planning, and navigation is another critical challenge that needs to be solved to make the whole approach feasible. For climbing navigation, a multirobot system needs to have up to date info of its location, together with a macroscopic map of the climbing surface and a detailed map ahead. This system with limited sensor range needs to discern and identify feasible pathways to make the next climbing step much like a human mountaineer. These climbing pathways consist of a series of anchor points for the robot to grip onto next. Identifying one or more feasible pathways is a critical challenge as the terrain ahead needs to be acquired, followed by identification and ranking of anchor points to grip. The climbing task resembles a maze with wrong pathways leading to dead-end. The multirobot systems need to autonomously explore climbing pathways and know when to give up. In this paper, we present a human devised autonomous climbing algorithm and evaluate it using a high-fidelity dynamics simulator. The climbing surfaces contain impassable obstacles and some loosely held rocks that can dislodge. Under these conditions, the robots need to autonomously map, plan and navigate up or down these steep environments. Autonomous mapping and navigation capability is evaluated using simulated lasers, vision sensors. The human devised planning algorithm uses a new algorithm called bounded-leg A*. Our early simulation results show much promise in these techniques and our future plans include demonstration on real robots in a controlled laboratory environment and outdoors in the canyons of Arizona. Keywords—autonomous climbing; multirobot systems; path planning; spiny gripper
منابع مشابه
Biomimetic Climbing Gaits for a Snake Robot
Mobile robotics have long been considered a possible tool for everything from remote diagnostics to search and rescue. Snake-like robots in particular have shown significant promise in search and rescue operations due to their ability to traverse a very wide range of sizes and shapes. Such robots can crawl in spaces not much larger than the robot itself, as well as climb over obstacles nearly a...
متن کاملMobile Robot Navigation in Dynamic Environments
Service robots which act in environments populated by humans have become very popular in the last few years. A variety of systems exists which act for example in hospitals, office buildings, department stores, and museums. Furthermore, several multi-robot systems have been developed for tasks which can be accomplished more efficiently by a whole team of robots than just by a single robot. These...
متن کاملDynamic Modeling and Construction of a New Two-Wheeled Mobile Manipulator: Self-balancing and Climbing
Designing the self-balancing two-wheeled mobile robots and reducing undesired vibrations are of great importance. For this purpose, the majority of researches are focused on application of relatively complex control approaches without improving the robot structure. Therefore, in this paper we introduce a new two-wheeled mobile robot which, despite its relative simple structure, fulfills the req...
متن کاملNavigation Techniques of Mobile Robots In Greenhouses
With the continuous development of the industrialization process, the countries all over the world gradually appeared lack of agricultural labor force and aging phenomenon, which was especially prominent in developed countries. However the agricultural robot with high operating efficiency, high qualities of work will play an increasingly important role in future agricultural production. Robot n...
متن کاملNavigation Techniques of Mobile Robots In Greenhouses
With the continuous development of the industrialization process, the countries all over the world gradually appeared lack of agricultural labor force and aging phenomenon, which was especially prominent in developed countries. However the agricultural robot with high operating efficiency, high qualities of work will play an increasingly important role in future agricultural production. Robot n...
متن کامل